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RGB-D salient object detection has achieved a great development in recent years due to its extensive 

applications. Previous studies mainly focus on simple scene images with one single object. These mod- 

els usually become overwhelmed by complex scenes with multiple objects. Moreover, these methods 

model salient object detection as a binary segmentation problem. However, psychology studies show that 

humans shift their visual attention from one object to another and rank salient objects, especially in 

complex indoor scenes. Following the psychological studies, we propose to rank salient objects in RGB-D 

images of complex indoor scenes. Due to the lack of such data, we first construct a RGB-D salient object 

ranking dataset containing complex indoor scenes with multiple objects. The saliency ranking of different 

objects is defined based on the order that an observer notices these objects. The final salient object rank- 

ing result is an average across the saliency rankings of 13 observers. This RGB-D salient object ranking 

dataset is also analyzed with current mainstream RGB-D salient object detection dataset for comparison. 

Since location information provided by depth images can help to determine the saliency ranking of ob- 

jects, we further propose an end-to-end network exploiting depth stack and ground truth stack to predict 

the order of salient objects in complex scenes. The quantitative and qualitative comparisons demonstrate 

the effectiveness of the proposed method. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Salient object detection can be used as a pre-processing tech- 

ique for many vision-related applications such as semantic seg- 

entation [1] , foreground map evaluation [2,3] , visual track- 

ng [4] , image parsing [5] , image captioning [6] and person re- 

dentification [7,8] . Therefore, research in salient object detection, 

hich has attracted the interest of many researchers, has grown 

xtensively in recent years [9–11] . Salient object detection has a 

trong correlation with the object’s location. Moreover, the depth 

ap, which can provide contour and location information of the 

bject, is a vital aid in determining the saliency of the object. 

herefore, RGB-D salient object detection gains more and more at- 

ention from researchers. 
∗ Corresponding author at: The Key Laboratory of Measurement and Control of 

SE, Ministry of Education, School of Automation, Southeast University, Nanjing 

10096, China. 
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Most RGB-D salient object detection datasets contain simple 

utdoor scene images with a single object. However, the real-world 

cene is usually complex and contains multiple objects. This limits 

he application capacity of RGB-D salient object detection models 

o real-world vision tasks to some extent. Furthermore, psychology 

tudies show that humans have the ability to shift their visual at- 

ention from one object to another. This ability can help humans to 

eal with complex scenes with multiple objects and rank salient 

bjects accordingly. Besides, the judgment of saliency is usually 

ubjective. Observers judge the saliency of different objects both 

ifferently and similarly. Thus, it is difficult to evaluate the saliency 

f objects in complex scenes in a straightforward way [12] . How- 

ver, the existing RGB-D salient object detection task is treated as 

 binarization problem, which does not match the real visual per- 

eption of humans. Following the psychological studies, this pa- 

er introduces salient object ranking into the RGB-D saliency de- 

ection domain. Due to the lack of such a dataset, a complex in- 

oor saliency ranking dataset with multiple objects is constructed 

n this paper. Based on the NYU Depth-v2 dataset [13] , we invited 

3 annotators to label the objects considered salient based on the 

https://doi.org/10.1016/j.patcog.2022.109251
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109251&domain=pdf
mailto:jinxiazhang@seu.edu.cn
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Fig. 1. (a) Image from our dataset, (b) corresponding depth map, (c) corresponding ground truth(GT) for saliency rank and (d) corresponding GT for saliency rank (colorised, 

red represents for rank 1, green represents for rank 2, blue represents for rank 3 and cyan represents for rank 4+). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

o

j

o

r

t

i  

d

m

p

t

r

a

i

r

(

o

j

o

t

j

t

d

u

d

f

t

v

rder they noticed the objects for each image. The final salient ob- 

ect ranking result is an average across the saliency ranks of these 

bservers. We further analyze the proposed RGB-D salient object 

anking dataset with the mainstream RGB-D salient object detec- 

ion dataset for comparison. 

Some example images and corresponding truths can be seen 

n Fig. 1 . The first column of this figure is RGB images of the

ataset, and it can be seen that it contains indoor scenes with 

ultiple objects. Moreover, the background of the images in the 

roposed dataset is messy and complex. These characteristics of 

his dataset fit the realistic application scenario of salient object 

anking. The second column contains depth images of the dataset, 

nd the third column is the ground truths for salient object rank- 

ng. The fourth column contains colorized ground truths where red 
2 
epresents rank 1 (the most salient object), green represents rank 2 

the second salient object), blue represents rank 3 (the third salient 

bject) and cyan represents for rank 4+. The number of salient ob- 

ects in our dataset is not fixed and there may be one, two, three 

r more salient objects. Objects with a saliency rank greater than 

hree are labeled as rank 4+. Not fixing the number of salient ob- 

ects is more in line with the logic of salient object ranking. From 

he second, third, and fourth columns, we can see that objects with 

ifferent saliency ranking levels usually have different depth val- 

es. Generally, objects with a higher level salient rank have smaller 

epth values. This shows that the depth map is significantly help- 

ul in predicting the salient object ranking. And there is a correla- 

ion between the saliency ranking level of the object and the depth 

alue. 
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To fully exploit the depth information, we propose an end-to- 

nd learning network to rank salient objects based on the depth 

tack and ground truth stack. The depth stack consists of sub-depth 

aps for four different depth intervals. We treat the sub-depth 

aps as depth stack. Similarly, we separate the ground truth into 

our different sub-ground truths as a ground truth stack. Based 

n these stacks, four different coarse saliency prediction maps are 

enerated. And then, a saliency re-fusion module is proposed to 

ombine them to generate the final prediction map for salient ob- 

ect ranking. 

The main contributions of the work include: Firstly, we pro- 

ose a new research problem to rank salient objects in the RGB-D 

aliency detection field. This research problem is inspired by the 

isual perception of humans, who shift their attention from one 

bject to another. Secondly, we construct an RGB-D salient object 

anking dataset that contains complex indoor images with multi- 

le objects. We analyze the dataset in-depth and compare it with 

alient object detection datasets. Thirdly, we propose an end-to- 

nd learning network that fully uses depth information based on 

epth stack and ground truth stack to perform RGB-D salient ob- 

ect ranking task. Experimental comparisons demonstrate the ef- 

ectiveness of the proposed method. 

. Background 

.1. RGB-D saliency detection datasets 

RGB-D salient object detection is a study to locate the most 

alient objects for a given scene using RGB maps and depth maps 

14] . With the development of depth sensors, depth maps with rich 

ocation information have become easier to acquire. This has led to 

ignificant advances in RGB-D salient object detection [15] . 

Since depth information can provide rich location and contour 

nformation in the feature extraction process, more and more re- 

earchers are now interested in RGB-D salient object detection. 

owever, the existing scenarios for RGB-D salient object detection 

re relatively simple. Most existing RGB-D datasets collect images 

hich have a prominent object or a relatively clean background 

uch as STERE [16] , NLPR [17] , NJUD [18] , DUT-RGBD [19] and SIP

20] . The sample images of these datasets are shown in the first 

ve columns of Fig. 2 . It can be seen that most of the scenes

n the previous dataset contain only one salient object or person, 

nd the background is relatively simple. This is a great difference 

rom the actual application scenes. Real-world applications often 

ncounter more complex situations, such as occlusions, appear- 

nce changes, and low illumination, which may degrade the per- 

ormance of salient object detection. 

Some datasets also contain complex scenes with multiple ob- 

ects, such as GIT [21] and DES [22] shown in the sixth and sev-

nth columns of Fig. 2 . However, the number of images for these 

atasets is generally small. GIT dataset contains 80 images, and 

he DES dataset contains 135 images. These datasets are mostly 

round one hundred images, which cannot meet the training re- 

uirements for the deep learning network [23] . All these previous 

GB-D datasets above treat salient object detection as a two-class 

lassification task. However, humans shift attention from one ob- 

ect to another in a scene, and different people perceive saliency 

ifferently. Therefore, this paper constructs an RGB-D salient ob- 

ect ranking dataset. The constructed dataset contains complex im- 

ges with multiple objects, shown in the last column of Fig. 2 . The

ackground, object scale, lighting condition, and appearance vari- 

nce of the images in our dataset are more complex than in other 

atasets. 
3 
.2. RGB-D salient object detection 

The most distinctive part of RGB-D salient object detection is 

he fusion of the RGB maps and the depth maps. There are gener- 

lly three types of fusion, i.e., early fusion, late fusion, and multi- 

cale fusion. Early fusion is implemented by directly overlaying the 

GB channels and the depth channels or fusing the low-level fea- 

ures computed based on RGB or depth channels [24,25] . Late fu- 

ion is carried out by overlaying high-level features from two par- 

llel streams or by fusing two coarse saliency maps from two par- 

llel streams [26–28] . Multi-scale fusion is to first fuse RGB and 

epth features from different layers and then integrate these fea- 

ures into the decoder network [29,30] . 

Current RGB-D salient object detection treats this task as a bi- 

arized prediction task. This approach is not in line with the vi- 

ual perception of humans. In real life, visual attention will shift 

rom one object to another. Meanwhile, people have subjectivity 

nd inconsistency about the saliency of various objects in a com- 

lex scene. Based on the above psychological observations, we in- 

roduce the salient object ranking task to the RGB-D field. We pro- 

ose an end-to-end learning network that leverages depth infor- 

ation based on depth stack and ground truth stack to perform 

he RGB-D salient object ranking task. 

.3. Salient object ranking 

Salient object ranking is a new task proposed in the RGB field 

n recent years to rank the objects in a scene based on the saliency 

evels. Islam first presented this task in 2018 [31] based on the 

ascal-S [32] dataset. The annotation information of Pascal-S con- 

ains only the number of times each instance has been labeled, 

hich is the number of the 12 labellers who considered the in- 

tance to be a salient object. Islam used this annotation informa- 

ion as a basis for saliency ranking. However, there is no infor- 

ation of attention shift in this dataset. In 2020, Siris [33] con- 

tructed an RGB salient object ranking dataset based on an im- 

ge segmentation dataset and an eye fixation prediction dataset. 

ince this dataset does not contain information about majority vot- 

ng, the results may be not generalizable and would be biased to- 

ards a particular annotator. In contrast, the annotations of our 

ataset contain not only the number of times one instance labeled 

s salient object but also the order in which the annotators noticed 

he object. In this way, the ground truth of our dataset contains in- 

ormation about attention shifts, not just the saliency based on the 

umber of annotations. Such a dataset is more consistent with the 

uman eye’s pattern of recognizing salient objects in multi-object 

cenes. Moreover, both Islam and Siris rank salient objects in the 

GB field, while we introduce the salient object ranking task to the 

GB-D field to better exploiting the depth information rather than 

nly RGB images. 

In the work [31] , Islam proposed a deep network that used 

he ground truth stacks according to different saliency levels to 

enerate salient object ranking maps [31] . We also exploit the 

round truth stack in the proposed method. But our method and 

he method of the work differ a lot. Firstly, instead of redundantly 

tacking 12 sub-GTs, our ground truth stack can be explicitly di- 

ided into four sub-GTs. Secondly, prior work does not take full 

dvantage of the depth information. In contrast, the depth stack 

odule is proposed for synergy between depth stack and ground 

ruth stack in our method. Depth information can provide objects’ 

ontour and location information, which is a vital aid in determin- 

ng the saliency ranking of the objects. Meanwhile, depth sensors 

re now developing rapidly, and it is becoming easier to obtain 

epth information. 

3D vision has attracted great interest of research community. 

nd we expect RGB-D salient object ranking in this dataset to con- 
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Fig. 2. This is a visual comparison between our RGB-D salient object ranking dataset and the current mainstream RGB-D salient object detection datasets. The background, 

object scale, lighting condition and appearance variance of the images in our dataset are more complex than other datasets, where most of the objects are single and the 

background lighting conditions are simple and easy to distinguish. 
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ribute to other subsequent tasks in 3D vision. Thus, this paper in- 

roduces the salient object ranking task into the RGB-D field. 

. RGB-D saliency ranking dataset 

.1. Definition of RGB-D salient object ranking 

The goal of the RGB-D salient object ranking task is to identify 

nd rank the salient objects in the scene based on the RGB and 

epth information. The input of this task is an RGB image and a 

epth map. The output of this task is a two-dimentional gray map, 

s is shown below: 

 = Model(I RGB , I depth ) (1) 

here S denotes the output prediction map, Model denotes a 

ethod, and I RGB and I depth denote the input RGB map and depth 

ap respectively. 

The different values of pixels in the prediction map S represent 

ifferent saliency levels, with larger values representing higher 

aliency levels. For example, the value of 255 represents rank 1, 

hile the value of 0 represents the background. The rank order of 

ne salient instance in prediction map is obtained by averaging the 

aliency scores of different pixels within that instance mask [31] : 

ank 

(
S 
(
δ
))

= 

∑ ρδ

i =1 
S δ

(
x i , y i 

)
ρδ

, (2) 

here δ represents a particular instance of the predicted saliency 

ap ( S ), ρδ denotes total number of pixels the instance δ contains, 

nd S δ(x i , y i ) refers to saliency score for the pixel (x i , y i ) inside the

nstance δ. 

The proposed task helps to model the visual attention and at- 

ention shift of humans in 3D scenes and investigate the associ- 

tion between depth information and salient object ranking. This 

ask does not consider saliency as a binarization task, which is 
4 
ore in line with the visual perception of attention shift when 

bserving objects in complex scenes. Moreover, RGB-D salient ob- 

ect ranking task can be employed as a preprocessing precedure for 

ubsequent tasks in 3D vision, such as image segmentation, object 

etection and so on. Depth sensors are now developing rapidly, 

nd it is becoming easier to obtain depth information. Thus 3D vi- 

ion has attracted the great interest of research community. We 

xpect RGB-D salient object ranking in this dataset to contribute 

o other subsequent tasks in 3D vision. 

.2. Data collection and truth generation 

Previous RGB-D salient object detection task is treated as a bi- 

ary classification problem. And the RGB-D models usually de- 

ect salient objects in simple scenes with one prominent object. 

n this paper, we construct a RGB-D salient object ranking dataset 

ontaining the indoor complex scenes with multiple objects. We 

onstruct the RGB-D salient object ranking dataset based on the 

YU Depth-v2 [13] dataset, which contains 1449 indoor complex 

GB images with multiple objects, high-quality depth maps and 

he ground truths for instance segmentation. The proposed RGB- 

 salient object ranking dataset is marked as RGBD NYU-rank. 

We let 13 annotators label different objects in each image ac- 

ording to the order they noticed the object. In the labeling pro- 

ess, we do not limit the number of objects they can label. So a 

articular annotator may think that there are many salient objects 

n a scene when annotating an image, or may only annotate a few 

alient objects, or even think there are no salient objects in the 

mage. 

We first analyze the annotation data to figure out the proper 

umber of the rank for salient objects. An instance is considered 

s a salient object if it is annotated as saliency more than six times 

ut of 13 annotators according to the majority voting. We then 

ounted the number of salient objects for each image. The num- 



J. Deng, J. Zhang, Z. Hu et al. Pattern Recognition 137 (2023) 109251 

Table 1 

Count and percentage of images corresponding to different numbers of salient objects in NYU 

dataset. 

Salient object 1 2 3 4 5 6 7 + Total 

Images 178 447 626 104 72 18 4 1449 

Distribution (%) 0.123 0.308 0.432 0.070 0.049 0.012 0.003 1 

Table 2 

Comparison of our dataset with existing mainstream RGB-D salient object detection datasets and 

RGB-D salient object ranking datasets. SOD represents salient object detection and SOR represents 

salient object ranking. MV represents majority voting information, AS represents attention shift in- 

formation and DI represents depth information. 

Dataset Size Object Types Task MV AS DI 

STERE [16] 1000 Single Outdoor SOD Yes No Yes 

GIT [21] 80 Multiple Home environment SOD Yes No Yes 

DES [22] 135 Single Complex indoor SOD Yes No Yes 

NLPR [17] 1000 Multiple Simple indoor/Outdoor SOD Yes No Yes 

NJUD [20] 1985 Single Moive/Internet/Photo SOD Yes No Yes 

DUT-RGBD [19] 1200 Multiple Simple indoor/Outdoor SOD Yes No Yes 

SIP [20] 929 Multiple Person in wild SOD Yes No Yes 

Pascal-S [31] 850 Multiple Indoor/Outdoor SOR Yes No No 

ASR [33] 11,500 Multiple Indoor/Outdoor SOR No Yes No 

NYU-rank 1449 Multiple Complex indoor SOR Yes Yes Yes 
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er of images with different numbers of salient objects and corre- 

ponding proportions in the dataset are listed in Table. 1 . From the 

able, we can see that the images which contain 1, 2 or 3 salient

bjects cover most of the dataset, and the total proportion reaches 

6.3%. According to these characteristics, we set four rank levels, 

ank 1, rank 2, rank 3 and rank 4+. It should be noted that the

umber of salient objects in the image is arbitrary. Depending on 

he majority voting results, there can be one or more salient ob- 

ects, not a fixed number of four salient objects. In this way, the 

umber of salient objects in the dataset are variable for each im- 

ge. 

First of all, we consider the objects in the scene that are la- 

eled more than 6 times as salient objects according to the prin- 

iple of majority voting. Then we rank these salient objects in or- 

er of saliency. To model the attention shift mechanism of humans, 

ifferent annotated salient objects are assigned different scores ac- 

ording to the labeling order. The score for the first labeled salient 

bject by each annotator is 1 point, and the score decreases by 

0% for the next annotated salient object. That is, the scores for 

he second and third annotated saliency objects are 0.9 and 0.8 

oints separately. The first labeled instance gets most of the visual 

ttention during annotation. This is consistent with the attention 

echanism in our daily lives, where people tend to catch the most 

ttractive things first, followed by the less attractive ones [33] . 

To consider the overall saliency rank behavior of different anno- 

ators, the annotation scores of the same instances from different 

nnotators are summed up. Then the summed scores of different 

nstances are sorted within each image. The instances considered 

alient by majority voting are first selected as salient objects, then 

he scores of these salient objects are used to rank them. In each 

mage, the instance with the highest annotation score is labeled as 

ank 1, the instance with the second highest annotation score is la- 

eled as rank 2, and so on for four rank levels. In particular, those 

ith scores outside of the top three are labeled as rank 4+. 

.3. Data analysis 

We first compare the proposed RGBD NYU-rank dataset with 

ther RGB-D salient object detection datasets, concluded in Table 2 . 

he visual comparisons between different datasets are shown in 

ig. 2 . According to Fig. 2 and Table 2 , The STERE [16] , NLPR [17] ,

UT-RGBD [19] and SIP [20] datasets have about one thousand 
5 
mages, but they contain primarily single object and simple back- 

round. 

These datasets all contain distinct foreground objects, while the 

ackground is relatively clean and easy to distinguish, which is 

ery different from the actual scene. Meanwhile, our dataset con- 

ains indoor, complex scenes closer to the actual scenes. In par- 

icular, although NLPR [17] and DUT-RGBD [19] contain multiple 

bjects, there are very few of these images that contain multiple 

bjects. In the NLPR dataset, only six of the first hundred images 

ave ground truth containing multiple salient objects, while the re- 

aining 94 have only one salient object. Similarly, three of the first 

undred images in the DUT-RGBD contain multiple salient objects, 

hile the remaining 97 images contain only one salient object. In 

ontrast, 88 of the first hundred images in our dataset have mul- 

iple salient objects in the ground truth. Our dataset has far more 

mages with multiple salient objects than the other two datasets. 

The DES [22] and GIT [21] have complex indoor scenes, but 

he number of images is small. Specifically, DES dataset contains 

35 images and GIT contains 80 images. The proposed RGBD NYU- 

ank dataset contains 1449 indoor complex scenes with multiple 

bjects. Most importantly, all the above datasets treat saliency de- 

ection as the binary classification problem, which does not match 

he real visual perception of humans. The proposed RGBD NYU- 

ank dataset treats saliency detection as the salient object ranking 

roblem, which is consistent with the attention shift mechanism 

f humans. 

We also compare the proposed RGBD NYU-rank dataset with 

xisting salient object ranking datasets in Table 2 . Both Pascal-S 

32] dataset and ASR [33] dataset do not contain depth informa- 

ion maps. In contrast, the proposed dataset provides depth maps. 

mong them, the Ground Truth of Pascal-S [32] dataset contains 

he number of times 12 annotators annotate each instance. There- 

ore, the annotation information can be used to find the salient 

bjects according to the principle of majority voting. The number 

f times labelled for one instance is also used to determine the 

aliency level of the instances. But Pascal-S does not contain infor- 

ation about attention shift. The salient object ranking task is pri- 

arily designed to model the human visual attention mechanism. 

he human visual attention mechanism allows humans to process 

isual information and respond quickly to overwhelming visual in- 

ut: the human visual attention mechanism allows humans to fo- 

us on the most attractive information first, and then shift to focus 
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n the less attractive information. This phenomenon is called at- 

ention shift. Adding attention shift information makes salient ob- 

ect ranking task more consistent with the visual attention mech- 

nism of the human eye. Without attention shift information, we 

an only assign the same score to different objects in the same 

cene. This does not correspond to the actual phenomenon of the 

uman eye when observing multiple objects simultaneously. 

The ASR dataset uses eye fixation annotation to score all in- 

tances in the image. This dataset considers the attention shifts, 

ut this information is only collected via one annotator. Since the 

ataset does not contain information about majority voting, the 

enerated ground truth is not generalizable and may be biased to- 

ards a particular annotator. In contrast, our dataset can obtain 

alient objects and saliency ranking levels based on the order of 

ttention shifts of multiple annotators during labelling. 

We further conduct the data analysis to disclose the char- 

cteristics of the proposed dataset by comparing the proposed 

ataset with four other mainstream RGB-D salient object detec- 

ion datasets. We first calculate the number of salient categories 

n the dataset. There are 895 categories in the original NYU Depth- 

2 [13] dataset. 208 categories appear in our ground truth, which 

eans 208 out of 895 categories are salient. 

We also compute the number of times each specific category 

s labeled as the salient object in our dataset, seen in Fig. 3 (a).

he horizontal coordinate indicates the different categories and the 

ertical coordinate indicates the number of instances of the cat- 

gory. The most common category is picture, which appears 493 

imes. The second common category is chair, which appears 353 

imes. And the third common category is the pillow, which ap- 

ears 181 times, as seen in Fig. 3 (b). The horizontal coordinate 

ndicates the different categories and the vertical coordinate indi- 

ates the number of instances of the category. It can be seen that 

he dataset contains indoor objects with a large number of seman- 

ic categories, which indicates that it is an indoor scene dataset. 

The sizes of different salient objects are analyzed in Fig. 3 (c). 

he horizontal coordinate indicates the scale of the salient ob- 

ect in the whole image, calculated as the pixel number of the 

alient object divided by the pixel number of the entire image. 

he vertical coordinates indicate the number of instances with dif- 

erent scales. To facilitate comparison between different datasets, 

e normalize the number of instances with each scale to [0, 100]. 

rom the data, we can see that the peaks of the curves for other 

atasets are around 0.2 to 0.4, while the curve peak of the pro- 

osed dataset is around 0.1. The scales of salient objects in other 

atasets are much larger than ours, and most of the salient objects 

n our dataset only occupy a proportion of ten percent of the im- 

ge. The above observation indicates that the proposed dataset is 

ore complex. 

We also analyze the depth information of the dataset, shown 

n Fig. 3 (d). The horizontal coordinate represents the pixel’s depth 

alue, and the vertical coordinate represents the proportion of the 

ixels in the entire dataset. We count the number of pixels for 

ll the regions labeled as salient objects for each depth value. 

t can be seen that the most salient points concentrate in loca- 

ions with smaller depth values. This indicates a correlation be- 

ween the value of the depth and the saliency of objects. Be- 

ides the proposed dataset, a large amount of data from the NLPR 

17] and the SIP [20] datasets also have a lot of salient points with

maller depth values, which also demonstrate the correlation be- 

ween saliency and depth. 

The light and saturation situation contrast are also calculated, 

s shown in Fig. 3 (e) and (f). The horizontal coordinate represents 

he pixel’s light or saturation value, and the vertical coordinate 

epresents the proportion of the pixels in the entire dataset. Our 

ataset has a smoother result for both light and saturation situa- 

ion contrast, which indicates a wider and more diverse distribu- 
6 
ion of light conditions and color information in the dataset. This 

hows that our dataset has a more complex lighting situation and 

iverse color information. 

. Proposed network architecture 

According to the observation that there is usually a strong cor- 

elation between salient objects and depth information, in this pa- 

er, we propose an end-to-end network by exploiting the depth 

tack and the ground truth stack to solve the problem of salient 

bject ranking in RGB-D complex indoor scenes. 

We propose a Depth Stack Module (DSM) and a Saliency Map 

e-fusing Module (SMRM) to fully exploit the information of the 

epth stack and the ground truth stack. The whole network is de- 

cribed in Fig. 4 . A backbone network is first used to extract initial

eatures. 

Next, the DSM module is proposed to make use of each depth 

nterval which provides depth information at specific locations and 

roduce corresponding coarse saliency prediction map. 

Finally, we propose an SMRM module to integrate different 

oarse saliency prediction maps obtained based on different DSM 

odules. SMRM module utilizes the information of different rank 

evels and helps improve the network’s effectiveness in determin- 

ng the saliency ranking level. This module parses the information 

f different rank levels through multiple convolution operations to 

btain the final prediction map. 

.1. Generation of depth stack and ground truth stack 

As shown in Fig. 5 . A depth stack including depth interval 1, 

epth interval 2, depth interval 3 and depth interval 4+ is gen- 

rated based on the depth map. Similarly, based on the ground 

ruth, a ground truth stack is generated, which includes a sub- 

round truth map containing the most salient object (rank 1), 

 sub-ground truth map containing the two most salient objects 

rank 1 and rank 2), a sub ground truth map containing the first 

hree salient objects (rank 1, rank 2 and rank 3) and a sub ground 

ruth map containing all salient objects (rank 1, rank 2, rank 3 and 

ank 4+). 

Different depth intervals are used in the DSM module sepa- 

ately to extract the information of objects at different depths. The 

SM module distinguishes image features in different depth inter- 

als and facilitates the effective use of location information in the 

aliency ranking process. By comparing the coarse saliency predic- 

ion map with the corresponding ground truth interval, the pro- 

osed network with the depth stack module and ground truth 

tack is able to generate saliency prediction maps of different 

aliency rank levels: the coarse saliency prediction map with the 

ost salient objects, the coarse saliency prediction map with the 

wo most salient objects, the coarse saliency prediction map with 

he three most salient objects and the coarse saliency prediction 

ap with all salient objects. These modules facilitate the integra- 

ion of depth and RGB information and extract the location infor- 

ation from the depth map to rank salient objects. Note that in 

his process, if there are less than 4 salient objects in the scene, 

he sub-GTs of the higher rank level in the ground truth stack re- 

ain the same as those of the lower rank level. The depth stack 

orks the same way. 

.2. Backbone network 

BBSNet [34] is used as the backbone network to fuse the RGB 

ap and the depth map to provide the initial image feature. Three 

ets of low-level features and three sets of high-level features 

re generated. It incorporates each stage of the feature extraction 

tream of the depth map into the RGB feature extraction stream of 
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Fig. 3. (a) The distribution of categories in the dataset, (b) The distribution of categories with a relatively large number, (c) Comparison of the scale of salient objects in 

images, (d) Comparison of the depth values of salient objects, (e) Comparison of the luminance, (f) Comparison of the saturation. 

Fig. 4. Architecture overview. 

7
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Fig. 5. Depth stack and GT stack. (a) Depth stack and GT stack with four salient 

objects, (b) Depth stack and GT stack with two salient objects. 
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he corresponding stage by depth enhancement operations. There- 

ore, different stages of RGB and depth fused image features are 

enerated in that network, including three sets of high-level fea- 

ures and three sets of low-level features. The generated three sets 

f high-level features are fused to generate the final high-level fea- 

ure. The fused final high-level feature was used to generate coarse 

rediction map for all salient objects. Furthermore, the fused fi- 

al high-level feature is used as an attention feature to guide the 

ow-level features. The new attention features are combined with 

he low-level features at each input. We use upper low-level fea- 

ures as input features when generating a higher rank level coarse 

rediction map. Lower low-level image features are input when 

enerating a lower rank level coarse prediction map. These oper- 

tions allow for better utilization of image features at each stage 

nd more efficient generation of coarse saliency prediction maps 

t different rank levels. 

.3. Depth stack module 

As shown in Fig. 4 , the DSM module appears four times in the

etwork framework. Each depth interval is inputted into a DSM 

odule. Four coarse prediction maps are generated for four rank 

evels based on the backbone features and four different depth in- 

ervals. The detailed description of the DSM module is presented 

n Fig. 6 . The yellow module represents the convolution operation, 

nd the blue module represents the upsampling operation. 

First, we convert the depth map into four different depth inter- 

als using the method from Sun’s study [35] . According to the dif- 

erent depth values of different pixel points in the depth map, we 

an get a histogram with a depth value of [0, 255] in the horizon-

al coordinate and the number of occurrences of that pixel value in 

he vertical coordinate. The depth values of individual pixel points 

n an instance tend to be relatively close to each other, so multi- 

le peaks appear in the histogram. The vicinity of each peak may 
8

e the depth interval of pixel points of one or more instances. We 

ake depth values of the vicinity of each peak to form an interval, 

hen take the location of the pixels in this interval to form a sub- 

ap. These sub-maps are often composed of specific instances, and 

he depth values of the instances are closely related to the saliency 

ank of the instances. We build sub-maps in lower branches us- 

ng depth intervals with smaller pixel values. Therefore, the in- 

tances in the depth interval with smaller depth values tend to 

ave a higher saliency rank, which facilitates the determination of 

aliency levels. 

Then we combine the initial image features { f bbs 
i 

; i = 

 , 2 , . . . , 96 } obtained from the backbone network and the bi-

arized depth interval f depth with dot product: 

f f use 
i 

= f bbs 
i � f depth , (3) 

So we get new 96-dimensional image features { f f use 
i 

; i = 

 , 2 , . . . , 96 } which are highlighted by the depth interval. Then the

ewly generated features and the original features are combined 

y concatenation. Thus, both the depth highlighted features and 

he original features are taken into account: 

f con = O c ( f f use , f depth ) , (4) 

here O c denotes the concatenation operation. The concatenated 

eatures have 192 channels. Then two 2 × 2 convolution operations 

re adopted to change the channels of the features to 64. After 

ach convolutional layer, there are a Relu layer and a batch nor- 

alization layer: 

f concise = C on v 
(
C on v ( f con ) 

)
, (5) 

Finally, we used two upsampling operations and a 1 × 1 convo- 

ution operation to obtain a coarse prediction maps: 

 S = C on v 
(

F UP 

(
F UP ( f concise 

i ) 
))

, (6) 

here F UP denotes the up-sampling operation and { CS} is the 

oarse prediction map. After four depth stack modules, four coarse 

aliency prediction maps are generated, which can be denoted as 

S1, CS2, CS3 and CS4 separately. 

In this way, the features of objects with different depths are uti- 

ized individually based on depth intervals for better salient object 

anking. 

.4. Saliency map re-fusion module 

We propose a Saliency Map Re-fusion Module (SMRM) to in- 

egrate different coarse saliency prediction maps generated from 

ifferent DSM modules. This module parses the information of 

ifferent coarse saliency prediction maps for different rank lev- 

ls through multiple convolution operations to obtain the final 

aliency prediction map. 

As shown in Fig. 7 , we take the coarse saliency prediction maps 

or different rank levels as four input feature channels { CS i ; i = 

 , 2 , 3 , 4 } and perform an concatenate operation, where C denotes

oncatenate operation: 

 S = C (C S 1 , C S 2 , C S 3 , C S 4 ) (7) 

These features are further fused through a 2 × 2 convolution 

peration and two 3 × 3 convolution operations: 

 = T (CS) , (8) 

here T represents a series of convolution operations: a 2 × 2 

onvolution and two 3 × 3 convolutions. After each convolutional 

ayer, there are a Relu layer and a batch normalization layer. 

Then, we use a 1 × 1 convolution to generate feature map of 

our channels. Each channel represents a refined saliency predic- 

ion map of different rank level. This stage generates four different 
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Fig. 6. Graphical representation of depth stack module. 

Fig. 7. Graphical representation of saliency map re-fusion module. 
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efined saliency maps, { RS i ; i = 1 , 2 , 3 , 4 } . 
S i = Con v (F ) , (9) 

Finally, we add up these four refined saliency maps to get the 

nal prediction map: 

 = RS 1 + RS 2 + RS 3 + RS 4 (10) 

here S denotes the final saliency prediction map. 

Through summation and multiple convolutions, SMRM module 

uses the information of different coarse saliency maps for differ- 

nt rank levels, which helps to improve the performance of salient 

bject ranking. 

.5. Loss 

Inspired by the previous paper of Islam [31] , besides the loss 

etween the final saliency prediction map and the ground truth, 

e also exploit the synergy between the depth stack and the 

round truth stack to accomplish the task more efficiently. 

It can be seen that the depth map can be divided into multiple 

egions based on depth information, and these regions have a firm 

onsistency with the ground truth stack of saliency ranking, which 

s exploited to construct the SMRM module. 
9 
According to the ground truth map, a ground truth stack con- 

aining four sub-ground truths is generated. We take the instance 

f rank 1 (the most salient instance) to form a binarized sub- 

round truth. Similarly, we take instances of rank 1 and rank 2 

the two most salient instances) to form the second binarized sub- 

round truth. And three instances of rank 1, rank 2 and rank 3 are 

ombined to form the third binarized sub-ground truth. And the 

orth binarized sub-ground truth includes all salient objects. 

By calculating the loss between the coarse saliency predic- 

ion and the corresponding sub ground truth, four different coarse 

aliency prediction maps with different saliency rank levels can 

e generated: a coarse saliency prediction map with the most 

alient objects, a coarse saliency prediction map with the two most 

alient objects, a coarse saliency prediction map with the first 

hree salient objects and a coarse saliency prediction map with all 

alient objects. The proposed coarse saliency loss L C is as follows: 

 C = α(� ce (CS 1 , G 1 ) + � ce (CS 2 , G 2 ) + � ce (CS 3 , G 3 ) + � ce (CS 4 , G 4 )) , 
(11) 

In the above equation, CS1, CS2, CS3 and CS4 represent the 

oarse prediction maps of different rank levels after four DSM 

odules, respectively. And G1, G2, G3 and G4 represent the bina- 

ized sub ground truths of different rank levels. � ce represents the 
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Table 3 

Quantitative analysis of different models. 

The backbone network without the proposed 

DSM module and the proposed SMRM mod- 

ule is directly inputted into a simple con- 

volution operation to obtain the results as 

baseline. ↓ ( ↑ ) means the higher(lower) the 

better. 

Method MAE ↓ SOR ↑ 
DMRA [36] 0.191 0.627 

D3Net [37] 0.114 0.716 

SP-Net [10] 0.110 0.715 

Baseline (A) 0.161 0.679 

Baseline + DSM (B) 0.122 0.689 

Baseline + SMRM(C) 0.112 0.719 

SRCINet (D) 0 . 108 0 . 732 
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idly used binary cross entropy loss. And we also calculate the 

oss L R 

between generated refined prediction map corresponding 

o each coarse prediciton map and sub ground truth. 

 R 

= α(� ce (RS 1 , G 1 ) + � ce (RS 2 , G 2 ) + � ce (RS 3 , G 3 ) + � ce (RS 4 , G 4 )) , 
(12) 

RS1, RS2, RS3 and RS4 represent the refined prediction maps of 

ifferent rank levels in SMRM modules, respectively. And G1, G2, 

3 and G4 represent the binarized sub ground truths of different 

ank levels. � ce represents the widly used binary cross entropy loss. 

Our model is divided into four rank levels, extracting four dif- 

erent image features. Using the four image features of different 

ank levels generated before, we calculate the loss by correspond- 

ng these features to the ground truth of different rank levels in 

he saliency ranking. The previous image features are upsampled 

eparately to generate four binarized saliency maps compared with 

round truth at different rank levels. As a result, we obtain the 

aliency prediction maps for different rank levels. 

The final saliency loss is the weighted combination of the 

oarse saliency loss and the refined saliency loss. 

 = α( L C ) + β( L R 

) , (13) 

In the above equation, α and β are the weight parameters. In 

his paper, we will simply set α as 1/3 and set β to be 1. Since this

ork is for Salient object Ranking for Complex and Indoor scenes, 

he proposed network is abbreviated as SRCINet for simplicity. 

. Experiments 

.1. Implementation details 

Necessary image augmentations are exploited, such as random 

otation, random crop and random flip to avoid potential overfit- 

ing. The input image is resized to have a resolution of 640 × 480 .

ur model is implemented by the Pytorch framework and trained 

n TITAN RTX GPU. We set the mini-batch size to be 10. The total

umber of epochs for each training is 200. The Adam optimizer is 

mployed with the learning rate of 10 −4 . 

.2. Datasets 

The proposed database, i.e. NYU rank, is used to compare the 

erformances of different models. The proposed RGBD NYU-rank 

ataset contains RGB images, depth images and truth images for 

alient object ranking. We randomly divide this dataset into a 

raining set of 1160 images and a test set of 289 images. 

.3. Evaluation metrics 

Two metrics are employed to measure RGB-D Saliency ranking 

erformance, including Salient Object Ranking (SOR) and mean ab- 

olute error (MAE). SOR metric is used to assess the saliency rank- 

ng accuracy of different prediction maps. It is expressed as Spear- 

an’s Rank-Order correlation between the predicted rank order of 

he salient objects and the ground truth. Correlation coefficients 

re during the interval [ −1 , 1 ] from the absolutely wrong predic-

ion to the perfectly positive correlation [31] . If the predicted rank- 

ng series is the same as the actual ranking series, it is strongly 

orrelated, and the Spearman coefficient is 1. If the predicted rank- 

ng series is the opposite of the actual ranking series, the coeffi- 

ient is −1 . In this paper, all correlation coefficients are normalized 

o be in the range of [0,1] for a better linear formulation. 

The MAE is used to measure the pixel-level difference between 

he predicted map and the ground truth by averaging the absolute 

alue of the difference over all pixels. This metric is used to eval- 

ate the accuracy of the generated saliency maps. This metric is 
10 
elpful for both salient object ranking and salient object detection 

33] . 

.4. Quantitative analysis 

Previous saliency ranking studies have been conducted on RGB 

mages, and our study is the first RGB-D saliency ranking work. Be- 

ides the proposed SRCINet, we propose another three methods by 

dding none or part modules to the backbone network for com- 

arison. The first method is to obtain the prediction map by sim- 

le convolution operations based on the image features extracted 

y the backbone. This method is used as our baseline. The sec- 

nd method is to add the DSM module to the baseline. In this 

ethod, we add up the four coarse prediction maps and divide 

hem by four as the final prediction map. The third method is to 

dd the SMRM module to the baseline. The fourth method is the 

roposed SRCInet, where both the DSM module and SMRM module 

re added to the baseline. 

All the experiments are trained for 200 epochs. The epoch with 

he best MAE is taken as the final experimental result. Table 3 

hows the quantitative comparison of different models. It can be 

een from the MAE metrics that the addition of both the DSM 

odule and the SMRM module improves the prediction perfor- 

ance. The best MAE result is obtained when both the DSM mod- 

le and the SMRM module are added simultaneously. The experi- 

ental results show that the proposed SRCINet has the best per- 

ormance with the lowest MAE. As seen from the SOR metrics, the 

ddition of only the DSM module results in a slight decrease in the 

OR metrics. When only the SMRM module is added, the SOR met- 

ic slightly increases. Moreover, when both modules are added at 

he same time, the SOR metric gets a considerable improvement. 

his indicates that the two modules we designed can enhance the 

rediction of salient object ranking when interacting with each 

ther. From the modeling perspective, the DSM module improves 

he MAE metric but reduces the SOR metrics when used alone. At 

he same time, the SRMR module alone improves the MAE metric 

nd slightly improves the SOR metric. The MAE and SOR metrics 

re greatly improved when these two modules are used together. 

his reflects the effectiveness of the proposed model and validates 

ur idea that depth stack and ground truth stack can help to im- 

rove the RGB-D saliency ranking performance. 

We have compared the proposed method with three more RGB- 

 salient object detection methods: SPNnet, D3Net and DMRA. As 

t can be seen in Table 3 , the performance of the proposed model 

RCINet are the best comparing with other three RGB-D salient ob- 

ect detection models based on both MAE metric and SOR metric. 
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Fig. 8. Visual comparison of different models, (a) RGB images, (b) depth images, (c) ground truth, (d) The proposed SRCINet, (e) Baseline + SMRM, (f) Baseline + DSM, (g) 

Baseline, (h) SPNet [10] , (i) D3Net [37] , (j) DMRA [36] . 
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.5. Qualitative analysis 

Fig. 8 shows the visual comparison of the results based on dif- 

erent models. The first column of the figure is the RGB image, 

he second column is the depth map, and the third column is the 

round truth. The fourth column shows the prediction results of 

he complete SRCINet model. The fifth column shows the predic- 

ion results of the baseline added SMRM module, the sixth column 

hows the prediction results of the baseline added DSM module, 

nd the seventh column shows the effect of the baseline. 

It can be seen that when only the baseline model is used, the 

aliency ranking of the prediction results is not satisfactory. The 

ow rank level objects are often ignored. For example, in the sev- 

nth column of the third row, only the contour of the object in- 

tance of rank one can be predicted, but not the objects of rank 2 

nd rank 3. Also, the network is not able to correctly discern the 

aliency level of the object. When only the DSM module is added, 

he segmentation of the objects with low saliency rank is im- 

roved, but some cluttered lines appear in the images. Its saliency 

anking prediction is also unsatisfactory. For example, in the sixth 

olumn of the second row, all rank-level objects can be predicted, 

ut the contour of the objects is not precise enough. 
Fig. 9. Failure cases. (a) Image, (b) corresponding dept

11 
The segmentation of objects is improved by adding only the 

RMR module. And the saliency ranking of the model has been 

mproved. However, some background regions are incorrectly pre- 

icted as salient regions. For example, in the fifth column of the 

hird row, all three rank-level objects can be predicted, and the 

redicted saliency levels are basically correct. However, a large 

umber of background pixel points in the figure are predicted to 

e salient. 

After adding both the DSM module and SRMR module, the 

odel segmentation is significantly improved. And the saliency 

anking results have improved considerably. For example, in the 

ourth column of the third row, the contours of all three rank-level 

bjects can be predicted more accurately, and the three predicted 

bjects are correctly ranked in terms of saliency. 

We also visually compare the proposed method with three 

GB-D salient object detection models. It can be seen that SPNet 

an predict the saliency level relatively accurately, but there is a 

roblem of predicting some pixels in the background as salient. 

3Net can predict the contour information for accuracy, but failed 

o predict the saliency level correctly in some cases. For example, 

n the ninth column of the second row, the saliency level predic- 

ion deviates widely. DMRA can detect salient object, but does not 
h map, (c) ground truth(GT), (d) prediction map. 
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redict the saliency level. The contours of the objects were not cor- 

ectly predicted, while the saliency levels of different objects could 

ot be discerned in the prediction maps. 

.6. Failure cases 

There are still some failure cases in the results of our experi- 

ents as shown in Fig. 9 . When small objects appear in a scene

ith multiple salient objects, the model sometimes does not pre- 

ict the contours of small objects well. For example, in the fourth 

olumn of the first row and second row, objects with small objects 

re not correctly predicted. Further improvements can be made in 

he optimization of small salient object detection. Another kind of 

ailure case is that the prediction maps sometimes contain noise 

n the background. For example, in the fourth column of the third 

ow, there is some noise in the background of the prediction map. 

his shortcoming can be solved by introducing instance segmenta- 

ion. Subsequent works can introduce instance segmentation into 

GB-D salient object ranking to further improve the prediction re- 

ults. 

. Conclusion 

The current RGB-D salient object detection is treated as a bi- 

arized segmentation task. Besides, indoor and complex scenes 

ith multiple objects are usually uncommon in the current RGB-D 

aliency detection dataset. This paper introduces the salient object 

anking task into the RGB-D field. Since the lack of such a dataset, 

e reconstruct an RGBD NYU-rank dataset for salient object rank- 

ng tasks. The dataset contains indoor and complex scenes. We 

lso propose a novel end-to-end neural network for salient object 

anking using the synergistic features of depth stacks and ground 

ruth stacks. It exploits the location and contour information in the 

epth map to compensate for the missing information in RGB im- 

ges and perform the saliency ranking task more effectively. The 

xperiments demonstrate the effectiveness of our proposed neural 

etwork. It is proved that the proposed DSM module and SMRM 

odule can help to improve the effectiveness of the salient object 

anking performance. 

3D vision has attracted the great interest of the research com- 

unity, and we expect that the proposed RGB-D salient object 

anking task can contribute to other subsequent tasks of 3D vision. 

n the future, further attention can be paid to improving salient 

bject ranking results for small and low rank-level objects in the 

ataset. Also, an attempt can be made to introduce instance seg- 

entation into salient object ranking tasks. 
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