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ABSTRACT

RGB-D salient object detection has achieved a great development in recent years due to its extensive
applications. Previous studies mainly focus on simple scene images with one single object. These mod-
els usually become overwhelmed by complex scenes with multiple objects. Moreover, these methods
model salient object detection as a binary segmentation problem. However, psychology studies show that
humans shift their visual attention from one object to another and rank salient objects, especially in
complex indoor scenes. Following the psychological studies, we propose to rank salient objects in RGB-D
images of complex indoor scenes. Due to the lack of such data, we first construct a RGB-D salient object
ranking dataset containing complex indoor scenes with multiple objects. The saliency ranking of different
objects is defined based on the order that an observer notices these objects. The final salient object rank-
ing result is an average across the saliency rankings of 13 observers. This RGB-D salient object ranking
dataset is also analyzed with current mainstream RGB-D salient object detection dataset for comparison.
Since location information provided by depth images can help to determine the saliency ranking of ob-
jects, we further propose an end-to-end network exploiting depth stack and ground truth stack to predict
the order of salient objects in complex scenes. The quantitative and qualitative comparisons demonstrate

the effectiveness of the proposed method.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Salient object detection can be used as a pre-processing tech-
nique for many vision-related applications such as semantic seg-
mentation [1], foreground map evaluation [2,3], visual track-
ing [4], image parsing [5], image captioning [6] and person re-
identification [7,8]. Therefore, research in salient object detection,
which has attracted the interest of many researchers, has grown
extensively in recent years [9-11]. Salient object detection has a
strong correlation with the object’s location. Moreover, the depth
map, which can provide contour and location information of the
object, is a vital aid in determining the saliency of the object.
Therefore, RGB-D salient object detection gains more and more at-
tention from researchers.
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Most RGB-D salient object detection datasets contain simple
outdoor scene images with a single object. However, the real-world
scene is usually complex and contains multiple objects. This limits
the application capacity of RGB-D salient object detection models
to real-world vision tasks to some extent. Furthermore, psychology
studies show that humans have the ability to shift their visual at-
tention from one object to another. This ability can help humans to
deal with complex scenes with multiple objects and rank salient
objects accordingly. Besides, the judgment of saliency is usually
subjective. Observers judge the saliency of different objects both
differently and similarly. Thus, it is difficult to evaluate the saliency
of objects in complex scenes in a straightforward way [12]. How-
ever, the existing RGB-D salient object detection task is treated as
a binarization problem, which does not match the real visual per-
ception of humans. Following the psychological studies, this pa-
per introduces salient object ranking into the RGB-D saliency de-
tection domain. Due to the lack of such a dataset, a complex in-
door saliency ranking dataset with multiple objects is constructed
in this paper. Based on the NYU Depth-v2 dataset [13], we invited
13 annotators to label the objects considered salient based on the
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Fig. 1. (a) Image from our dataset, (b) corresponding depth map, (c) corresponding ground truth(GT) for saliency rank and (d) corresponding GT for saliency rank (colorised,
red represents for rank 1, green represents for rank 2, blue represents for rank 3 and cyan represents for rank 4+). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

order they noticed the objects for each image. The final salient ob-
ject ranking result is an average across the saliency ranks of these
observers. We further analyze the proposed RGB-D salient object
ranking dataset with the mainstream RGB-D salient object detec-
tion dataset for comparison.

Some example images and corresponding truths can be seen
in Fig. 1. The first column of this figure is RGB images of the
dataset, and it can be seen that it contains indoor scenes with
multiple objects. Moreover, the background of the images in the
proposed dataset is messy and complex. These characteristics of
this dataset fit the realistic application scenario of salient object
ranking. The second column contains depth images of the dataset,
and the third column is the ground truths for salient object rank-
ing. The fourth column contains colorized ground truths where red

represents rank 1 (the most salient object), green represents rank 2
(the second salient object), blue represents rank 3 (the third salient
object) and cyan represents for rank 4+. The number of salient ob-
jects in our dataset is not fixed and there may be one, two, three
or more salient objects. Objects with a saliency rank greater than
three are labeled as rank 4+. Not fixing the number of salient ob-
jects is more in line with the logic of salient object ranking. From
the second, third, and fourth columns, we can see that objects with
different saliency ranking levels usually have different depth val-
ues. Generally, objects with a higher level salient rank have smaller
depth values. This shows that the depth map is significantly help-
ful in predicting the salient object ranking. And there is a correla-
tion between the saliency ranking level of the object and the depth
value.
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To fully exploit the depth information, we propose an end-to-
end learning network to rank salient objects based on the depth
stack and ground truth stack. The depth stack consists of sub-depth
maps for four different depth intervals. We treat the sub-depth
maps as depth stack. Similarly, we separate the ground truth into
four different sub-ground truths as a ground truth stack. Based
on these stacks, four different coarse saliency prediction maps are
generated. And then, a saliency re-fusion module is proposed to
combine them to generate the final prediction map for salient ob-
ject ranking.

The main contributions of the work include: Firstly, we pro-
pose a new research problem to rank salient objects in the RGB-D
saliency detection field. This research problem is inspired by the
visual perception of humans, who shift their attention from one
object to another. Secondly, we construct an RGB-D salient object
ranking dataset that contains complex indoor images with multi-
ple objects. We analyze the dataset in-depth and compare it with
salient object detection datasets. Thirdly, we propose an end-to-
end learning network that fully uses depth information based on
depth stack and ground truth stack to perform RGB-D salient ob-
ject ranking task. Experimental comparisons demonstrate the ef-
fectiveness of the proposed method.

2. Background
2.1. RGB-D saliency detection datasets

RGB-D salient object detection is a study to locate the most
salient objects for a given scene using RGB maps and depth maps
[14]. With the development of depth sensors, depth maps with rich
location information have become easier to acquire. This has led to
significant advances in RGB-D salient object detection [15].

Since depth information can provide rich location and contour
information in the feature extraction process, more and more re-
searchers are now interested in RGB-D salient object detection.
However, the existing scenarios for RGB-D salient object detection
are relatively simple. Most existing RGB-D datasets collect images
which have a prominent object or a relatively clean background
such as STERE [16], NLPR [17], NJUD [18], DUT-RGBD [19] and SIP
[20]. The sample images of these datasets are shown in the first
five columns of Fig. 2. It can be seen that most of the scenes
in the previous dataset contain only one salient object or person,
and the background is relatively simple. This is a great difference
from the actual application scenes. Real-world applications often
encounter more complex situations, such as occlusions, appear-
ance changes, and low illumination, which may degrade the per-
formance of salient object detection.

Some datasets also contain complex scenes with multiple ob-
jects, such as GIT [21] and DES [22] shown in the sixth and sev-
enth columns of Fig. 2. However, the number of images for these
datasets is generally small. GIT dataset contains 80 images, and
the DES dataset contains 135 images. These datasets are mostly
around one hundred images, which cannot meet the training re-
quirements for the deep learning network [23]. All these previous
RGB-D datasets above treat salient object detection as a two-class
classification task. However, humans shift attention from one ob-
ject to another in a scene, and different people perceive saliency
differently. Therefore, this paper constructs an RGB-D salient ob-
ject ranking dataset. The constructed dataset contains complex im-
ages with multiple objects, shown in the last column of Fig. 2. The
background, object scale, lighting condition, and appearance vari-
ance of the images in our dataset are more complex than in other
datasets.
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2.2. RGB-D salient object detection

The most distinctive part of RGB-D salient object detection is
the fusion of the RGB maps and the depth maps. There are gener-
ally three types of fusion, i.e., early fusion, late fusion, and multi-
scale fusion. Early fusion is implemented by directly overlaying the
RGB channels and the depth channels or fusing the low-level fea-
tures computed based on RGB or depth channels [24,25]. Late fu-
sion is carried out by overlaying high-level features from two par-
allel streams or by fusing two coarse saliency maps from two par-
allel streams [26-28]. Multi-scale fusion is to first fuse RGB and
depth features from different layers and then integrate these fea-
tures into the decoder network [29,30].

Current RGB-D salient object detection treats this task as a bi-
narized prediction task. This approach is not in line with the vi-
sual perception of humans. In real life, visual attention will shift
from one object to another. Meanwhile, people have subjectivity
and inconsistency about the saliency of various objects in a com-
plex scene. Based on the above psychological observations, we in-
troduce the salient object ranking task to the RGB-D field. We pro-
pose an end-to-end learning network that leverages depth infor-
mation based on depth stack and ground truth stack to perform
the RGB-D salient object ranking task.

2.3. Salient object ranking

Salient object ranking is a new task proposed in the RGB field
in recent years to rank the objects in a scene based on the saliency
levels. Islam first presented this task in 2018 [31] based on the
Pascal-S [32] dataset. The annotation information of Pascal-S con-
tains only the number of times each instance has been labeled,
which is the number of the 12 labellers who considered the in-
stance to be a salient object. Islam used this annotation informa-
tion as a basis for saliency ranking. However, there is no infor-
mation of attention shift in this dataset. In 2020, Siris [33] con-
structed an RGB salient object ranking dataset based on an im-
age segmentation dataset and an eye fixation prediction dataset.
Since this dataset does not contain information about majority vot-
ing, the results may be not generalizable and would be biased to-
wards a particular annotator. In contrast, the annotations of our
dataset contain not only the number of times one instance labeled
as salient object but also the order in which the annotators noticed
the object. In this way, the ground truth of our dataset contains in-
formation about attention shifts, not just the saliency based on the
number of annotations. Such a dataset is more consistent with the
human eye’s pattern of recognizing salient objects in multi-object
scenes. Moreover, both Islam and Siris rank salient objects in the
RGB field, while we introduce the salient object ranking task to the
RGB-D field to better exploiting the depth information rather than
only RGB images.

In the work [31], Islam proposed a deep network that used
the ground truth stacks according to different saliency levels to
generate salient object ranking maps [31]. We also exploit the
ground truth stack in the proposed method. But our method and
the method of the work differ a lot. Firstly, instead of redundantly
stacking 12 sub-GTs, our ground truth stack can be explicitly di-
vided into four sub-GTs. Secondly, prior work does not take full
advantage of the depth information. In contrast, the depth stack
module is proposed for synergy between depth stack and ground
truth stack in our method. Depth information can provide objects’
contour and location information, which is a vital aid in determin-
ing the saliency ranking of the objects. Meanwhile, depth sensors
are now developing rapidly, and it is becoming easier to obtain
depth information.

3D vision has attracted great interest of research community.
And we expect RGB-D salient object ranking in this dataset to con-
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Fig. 2. This is a visual comparison between our RGB-D salient object ranking dataset and the current mainstream RGB-D salient object detection datasets. The background,
object scale, lighting condition and appearance variance of the images in our dataset are more complex than other datasets, where most of the objects are single and the

background lighting conditions are simple and easy to distinguish.

tribute to other subsequent tasks in 3D vision. Thus, this paper in-
troduces the salient object ranking task into the RGB-D field.

3. RGB-D saliency ranking dataset
3.1. Definition of RGB-D salient object ranking

The goal of the RGB-D salient object ranking task is to identify
and rank the salient objects in the scene based on the RGB and
depth information. The input of this task is an RGB image and a
depth map. The output of this task is a two-dimentional gray map,
as is shown below:

S = Model (Igcs, Idepth) ()

where S denotes the output prediction map, Model denotes a
method, and Iggp and Iy, denote the input RGB map and depth
map respectively.

The different values of pixels in the prediction map S represent
different saliency levels, with larger values representing higher
saliency levels. For example, the value of 255 represents rank 1,
while the value of 0 represents the background. The rank order of
one salient instance in prediction map is obtained by averaging the
saliency scores of different pixels within that instance mask [31]:

Ps RTH
Rank(S(S)) = Z'lslig(x'yl) (2)

where § represents a particular instance of the predicted saliency
map (S), ps denotes total number of pixels the instance é contains,
and S;(x;, y;) refers to saliency score for the pixel (x;,y;) inside the
instance 8.

The proposed task helps to model the visual attention and at-
tention shift of humans in 3D scenes and investigate the associ-
ation between depth information and salient object ranking. This
task does not consider saliency as a binarization task, which is

more in line with the visual perception of attention shift when
observing objects in complex scenes. Moreover, RGB-D salient ob-
ject ranking task can be employed as a preprocessing precedure for
subsequent tasks in 3D vision, such as image segmentation, object
detection and so on. Depth sensors are now developing rapidly,
and it is becoming easier to obtain depth information. Thus 3D vi-
sion has attracted the great interest of research community. We
expect RGB-D salient object ranking in this dataset to contribute
to other subsequent tasks in 3D vision.

3.2. Data collection and truth generation

Previous RGB-D salient object detection task is treated as a bi-
nary classification problem. And the RGB-D models usually de-
tect salient objects in simple scenes with one prominent object.
In this paper, we construct a RGB-D salient object ranking dataset
containing the indoor complex scenes with multiple objects. We
construct the RGB-D salient object ranking dataset based on the
NYU Depth-v2 [13] dataset, which contains 1449 indoor complex
RGB images with multiple objects, high-quality depth maps and
the ground truths for instance segmentation. The proposed RGB-
D salient object ranking dataset is marked as RGBD NYU-rank.

We let 13 annotators label different objects in each image ac-
cording to the order they noticed the object. In the labeling pro-
cess, we do not limit the number of objects they can label. So a
particular annotator may think that there are many salient objects
in a scene when annotating an image, or may only annotate a few
salient objects, or even think there are no salient objects in the
image.

We first analyze the annotation data to figure out the proper
number of the rank for salient objects. An instance is considered
as a salient object if it is annotated as saliency more than six times
out of 13 annotators according to the majority voting. We then
counted the number of salient objects for each image. The num-
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Table 1
Count and percentage of images corresponding to different numbers of salient objects in NYU
dataset.
Salient object 1 2 3 4 5 6 7+ Total
Images 178 447 626 104 72 18 4 1449

Distribution (%)  0.123  0.308  0.432

0.070 0.049 0.012 0.003 1

Table 2

Comparison of our dataset with existing mainstream RGB-D salient object detection datasets and
RGB-D salient object ranking datasets. SOD represents salient object detection and SOR represents
salient object ranking. MV represents majority voting information, AS represents attention shift in-

formation and DI represents depth information.

Dataset Size Object Types Task MV AS DI

STERE [16] 1000 Single Outdoor SOD  Yes No Yes
GIT [21] 80 Multiple Home environment SOD  Yes No Yes
DES [22] 135 Single Complex indoor SOD Yes No Yes
NLPR [17] 1000 Multiple  Simple indoor/Outdoor SOD  Yes  No Yes
NJUD [20] 1985 Single Moive/Internet/Photo SOD  Yes No Yes
DUT-RGBD [19] 1200 Multiple  Simple indoor/Outdoor ~ SOD  Yes  No Yes
SIP [20] 929 Multiple Person in wild SOD  Yes No Yes
Pascal-S [31] 850 Multiple Indoor/Outdoor SOR Yes No No
ASR [33] 11,500  Multiple  Indoor/Outdoor SOR No Yes No
NYU-rank 1449 Multiple  Complex indoor SOR  Yes Yes Yes

ber of images with different numbers of salient objects and corre-
sponding proportions in the dataset are listed in Table.1. From the
table, we can see that the images which contain 1, 2 or 3 salient
objects cover most of the dataset, and the total proportion reaches
86.3%. According to these characteristics, we set four rank levels,
rank 1, rank 2, rank 3 and rank 4+. It should be noted that the
number of salient objects in the image is arbitrary. Depending on
the majority voting results, there can be one or more salient ob-
jects, not a fixed number of four salient objects. In this way, the
number of salient objects in the dataset are variable for each im-
age.

First of all, we consider the objects in the scene that are la-
beled more than 6 times as salient objects according to the prin-
ciple of majority voting. Then we rank these salient objects in or-
der of saliency. To model the attention shift mechanism of humans,
different annotated salient objects are assigned different scores ac-
cording to the labeling order. The score for the first labeled salient
object by each annotator is 1 point, and the score decreases by
10% for the next annotated salient object. That is, the scores for
the second and third annotated saliency objects are 0.9 and 0.8
points separately. The first labeled instance gets most of the visual
attention during annotation. This is consistent with the attention
mechanism in our daily lives, where people tend to catch the most
attractive things first, followed by the less attractive ones [33].

To consider the overall saliency rank behavior of different anno-
tators, the annotation scores of the same instances from different
annotators are summed up. Then the summed scores of different
instances are sorted within each image. The instances considered
salient by majority voting are first selected as salient objects, then
the scores of these salient objects are used to rank them. In each
image, the instance with the highest annotation score is labeled as
rank 1, the instance with the second highest annotation score is la-
beled as rank 2, and so on for four rank levels. In particular, those
with scores outside of the top three are labeled as rank 4+.

3.3. Data analysis

We first compare the proposed RGBD NYU-rank dataset with
other RGB-D salient object detection datasets, concluded in Table 2.
The visual comparisons between different datasets are shown in
Fig. 2. According to Fig. 2 and Table 2, The STERE [16], NLPR [17],
DUT-RGBD [19] and SIP [20] datasets have about one thousand

images, but they contain primarily single object and simple back-
ground.

These datasets all contain distinct foreground objects, while the
background is relatively clean and easy to distinguish, which is
very different from the actual scene. Meanwhile, our dataset con-
tains indoor, complex scenes closer to the actual scenes. In par-
ticular, although NLPR [17] and DUT-RGBD [19] contain multiple
objects, there are very few of these images that contain multiple
objects. In the NLPR dataset, only six of the first hundred images
have ground truth containing multiple salient objects, while the re-
maining 94 have only one salient object. Similarly, three of the first
hundred images in the DUT-RGBD contain multiple salient objects,
while the remaining 97 images contain only one salient object. In
contrast, 88 of the first hundred images in our dataset have mul-
tiple salient objects in the ground truth. Our dataset has far more
images with multiple salient objects than the other two datasets.

The DES [22] and GIT [21] have complex indoor scenes, but
the number of images is small. Specifically, DES dataset contains
135 images and GIT contains 80 images. The proposed RGBD NYU-
rank dataset contains 1449 indoor complex scenes with multiple
objects. Most importantly, all the above datasets treat saliency de-
tection as the binary classification problem, which does not match
the real visual perception of humans. The proposed RGBD NYU-
rank dataset treats saliency detection as the salient object ranking
problem, which is consistent with the attention shift mechanism
of humans.

We also compare the proposed RGBD NYU-rank dataset with
existing salient object ranking datasets in Table 2. Both Pascal-S
[32] dataset and ASR [33] dataset do not contain depth informa-
tion maps. In contrast, the proposed dataset provides depth maps.
Among them, the Ground Truth of Pascal-S [32] dataset contains
the number of times 12 annotators annotate each instance. There-
fore, the annotation information can be used to find the salient
objects according to the principle of majority voting. The number
of times labelled for one instance is also used to determine the
saliency level of the instances. But Pascal-S does not contain infor-
mation about attention shift. The salient object ranking task is pri-
marily designed to model the human visual attention mechanism.
The human visual attention mechanism allows humans to process
visual information and respond quickly to overwhelming visual in-
put: the human visual attention mechanism allows humans to fo-
cus on the most attractive information first, and then shift to focus
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on the less attractive information. This phenomenon is called at-
tention shift. Adding attention shift information makes salient ob-
ject ranking task more consistent with the visual attention mech-
anism of the human eye. Without attention shift information, we
can only assign the same score to different objects in the same
scene. This does not correspond to the actual phenomenon of the
human eye when observing multiple objects simultaneously.

The ASR dataset uses eye fixation annotation to score all in-
stances in the image. This dataset considers the attention shifts,
but this information is only collected via one annotator. Since the
dataset does not contain information about majority voting, the
generated ground truth is not generalizable and may be biased to-
wards a particular annotator. In contrast, our dataset can obtain
salient objects and saliency ranking levels based on the order of
attention shifts of multiple annotators during labelling.

We further conduct the data analysis to disclose the char-
acteristics of the proposed dataset by comparing the proposed
dataset with four other mainstream RGB-D salient object detec-
tion datasets. We first calculate the number of salient categories
in the dataset. There are 895 categories in the original NYU Depth-
v2 [13] dataset. 208 categories appear in our ground truth, which
means 208 out of 895 categories are salient.

We also compute the number of times each specific category
is labeled as the salient object in our dataset, seen in Fig. 3(a).
The horizontal coordinate indicates the different categories and the
vertical coordinate indicates the number of instances of the cat-
egory. The most common category is picture, which appears 493
times. The second common category is chair, which appears 353
times. And the third common category is the pillow, which ap-
pears 181 times, as seen in Fig. 3(b). The horizontal coordinate
indicates the different categories and the vertical coordinate indi-
cates the number of instances of the category. It can be seen that
the dataset contains indoor objects with a large number of seman-
tic categories, which indicates that it is an indoor scene dataset.

The sizes of different salient objects are analyzed in Fig. 3(c).
The horizontal coordinate indicates the scale of the salient ob-
ject in the whole image, calculated as the pixel number of the
salient object divided by the pixel number of the entire image.
The vertical coordinates indicate the number of instances with dif-
ferent scales. To facilitate comparison between different datasets,
we normalize the number of instances with each scale to [0, 100].
From the data, we can see that the peaks of the curves for other
datasets are around 0.2 to 0.4, while the curve peak of the pro-
posed dataset is around 0.1. The scales of salient objects in other
datasets are much larger than ours, and most of the salient objects
in our dataset only occupy a proportion of ten percent of the im-
age. The above observation indicates that the proposed dataset is
more complex.

We also analyze the depth information of the dataset, shown
in Fig. 3(d). The horizontal coordinate represents the pixel’s depth
value, and the vertical coordinate represents the proportion of the
pixels in the entire dataset. We count the number of pixels for
all the regions labeled as salient objects for each depth value.
It can be seen that the most salient points concentrate in loca-
tions with smaller depth values. This indicates a correlation be-
tween the value of the depth and the saliency of objects. Be-
sides the proposed dataset, a large amount of data from the NLPR
[17] and the SIP [20] datasets also have a lot of salient points with
smaller depth values, which also demonstrate the correlation be-
tween saliency and depth.

The light and saturation situation contrast are also calculated,
as shown in Fig. 3(e) and (f). The horizontal coordinate represents
the pixel's light or saturation value, and the vertical coordinate
represents the proportion of the pixels in the entire dataset. Our
dataset has a smoother result for both light and saturation situa-
tion contrast, which indicates a wider and more diverse distribu-
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tion of light conditions and color information in the dataset. This
shows that our dataset has a more complex lighting situation and
diverse color information.

4. Proposed network architecture

According to the observation that there is usually a strong cor-
relation between salient objects and depth information, in this pa-
per, we propose an end-to-end network by exploiting the depth
stack and the ground truth stack to solve the problem of salient
object ranking in RGB-D complex indoor scenes.

We propose a Depth Stack Module (DSM) and a Saliency Map
Re-fusing Module (SMRM) to fully exploit the information of the
depth stack and the ground truth stack. The whole network is de-
scribed in Fig. 4. A backbone network is first used to extract initial
features.

Next, the DSM module is proposed to make use of each depth
interval which provides depth information at specific locations and
produce corresponding coarse saliency prediction map.

Finally, we propose an SMRM module to integrate different
coarse saliency prediction maps obtained based on different DSM
modules. SMRM module utilizes the information of different rank
levels and helps improve the network’s effectiveness in determin-
ing the saliency ranking level. This module parses the information
of different rank levels through multiple convolution operations to
obtain the final prediction map.

4.1. Generation of depth stack and ground truth stack

As shown in Fig. 5. A depth stack including depth interval 1,
depth interval 2, depth interval 3 and depth interval 4+ is gen-
erated based on the depth map. Similarly, based on the ground
truth, a ground truth stack is generated, which includes a sub-
ground truth map containing the most salient object (rank 1),
a sub-ground truth map containing the two most salient objects
(rank 1 and rank 2), a sub ground truth map containing the first
three salient objects (rank 1, rank 2 and rank 3) and a sub ground
truth map containing all salient objects (rank 1, rank 2, rank 3 and
rank 4+).

Different depth intervals are used in the DSM module sepa-
rately to extract the information of objects at different depths. The
DSM module distinguishes image features in different depth inter-
vals and facilitates the effective use of location information in the
saliency ranking process. By comparing the coarse saliency predic-
tion map with the corresponding ground truth interval, the pro-
posed network with the depth stack module and ground truth
stack is able to generate saliency prediction maps of different
saliency rank levels: the coarse saliency prediction map with the
most salient objects, the coarse saliency prediction map with the
two most salient objects, the coarse saliency prediction map with
the three most salient objects and the coarse saliency prediction
map with all salient objects. These modules facilitate the integra-
tion of depth and RGB information and extract the location infor-
mation from the depth map to rank salient objects. Note that in
this process, if there are less than 4 salient objects in the scene,
the sub-GTs of the higher rank level in the ground truth stack re-
main the same as those of the lower rank level. The depth stack
works the same way.

4.2. Backbone network

BBSNet [34] is used as the backbone network to fuse the RGB
map and the depth map to provide the initial image feature. Three
sets of low-level features and three sets of high-level features
are generated. It incorporates each stage of the feature extraction
stream of the depth map into the RGB feature extraction stream of
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Fig. 3. (a) The distribution of categories in the dataset, (b) The distribution of categories with a relatively large number, (c¢) Comparison of the scale of salient objects in
images, (d) Comparison of the depth values of salient objects, (e) Comparison of the luminance, (f) Comparison of the saturation.

Fig. 4. Architecture overview.
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Fig. 5. Depth stack and GT stack. (a) Depth stack and GT stack with four salient
objects, (b) Depth stack and GT stack with two salient objects.

the corresponding stage by depth enhancement operations. There-
fore, different stages of RGB and depth fused image features are
generated in that network, including three sets of high-level fea-
tures and three sets of low-level features. The generated three sets
of high-level features are fused to generate the final high-level fea-
ture. The fused final high-level feature was used to generate coarse
prediction map for all salient objects. Furthermore, the fused fi-
nal high-level feature is used as an attention feature to guide the
low-level features. The new attention features are combined with
the low-level features at each input. We use upper low-level fea-
tures as input features when generating a higher rank level coarse
prediction map. Lower low-level image features are input when
generating a lower rank level coarse prediction map. These oper-
ations allow for better utilization of image features at each stage
and more efficient generation of coarse saliency prediction maps
at different rank levels.

4.3. Depth stack module

As shown in Fig. 4, the DSM module appears four times in the
network framework. Each depth interval is inputted into a DSM
module. Four coarse prediction maps are generated for four rank
levels based on the backbone features and four different depth in-
tervals. The detailed description of the DSM module is presented
in Fig. 6. The yellow module represents the convolution operation,
and the blue module represents the upsampling operation.

First, we convert the depth map into four different depth inter-
vals using the method from Sun’s study [35]. According to the dif-
ferent depth values of different pixel points in the depth map, we
can get a histogram with a depth value of [0, 255] in the horizon-
tal coordinate and the number of occurrences of that pixel value in
the vertical coordinate. The depth values of individual pixel points
in an instance tend to be relatively close to each other, so multi-
ple peaks appear in the histogram. The vicinity of each peak may
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be the depth interval of pixel points of one or more instances. We
take depth values of the vicinity of each peak to form an interval,
then take the location of the pixels in this interval to form a sub-
map. These sub-maps are often composed of specific instances, and
the depth values of the instances are closely related to the saliency
rank of the instances. We build sub-maps in lower branches us-
ing depth intervals with smaller pixel values. Therefore, the in-
stances in the depth interval with smaller depth values tend to
have a higher saliency rank, which facilitates the determination of
saliency levels.

Then we combine the initial image features {fPbs;i=

1,2,...,96} obtained from the backbone network and the bi-
narized depth interval f?Pth with dot product:

f_fuse — fpbs o) fdepth (3)
1 1 ’

So we get new 96-dimensional image features {fl.fuse; i=
1,2,...,96} which are highlighted by the depth interval. Then the
newly generated features and the original features are combined
by concatenation. Thus, both the depth highlighted features and
the original features are taken into account:

fcon — Oc(ffuse’ fdepth)’ (4)

where O, denotes the concatenation operation. The concatenated
features have 192 channels. Then two 2 x 2 convolution operations
are adopted to change the channels of the features to 64. After
each convolutional layer, there are a Relu layer and a batch nor-
malization layer:

fconcise _ Conv(ConU(fwn))v ®)

Finally, we used two upsampling operations and a 1 x 1 convo-
lution operation to obtain a coarse prediction maps:

CS = Conv (Fup (FUP (ficoncise))) s (6)

where Fyp denotes the up-sampling operation and {CS} is the
coarse prediction map. After four depth stack modules, four coarse
saliency prediction maps are generated, which can be denoted as
CS1, CS2, CS3 and CS4 separately.

In this way, the features of objects with different depths are uti-
lized individually based on depth intervals for better salient object
ranking.

4.4. Saliency map re-fusion module

We propose a Saliency Map Re-fusion Module (SMRM) to in-
tegrate different coarse saliency prediction maps generated from
different DSM modules. This module parses the information of
different coarse saliency prediction maps for different rank lev-
els through multiple convolution operations to obtain the final
saliency prediction map.

As shown in Fig. 7, we take the coarse saliency prediction maps
for different rank levels as four input feature channels {CS;;i=
1,2, 3,4} and perform an concatenate operation, where C denotes
concatenate operation:

CS = C(CS1, CS;, CS3, CS4) (7)

These features are further fused through a 2 x 2 convolution
operation and two 3 x 3 convolution operations:

F =T(CS), (8)

where T represents a series of convolution operations: a 2 x 2
convolution and two 3 x 3 convolutions. After each convolutional
layer, there are a Relu layer and a batch normalization layer.

Then, we use a 1 x 1 convolution to generate feature map of
four channels. Each channel represents a refined saliency predic-
tion map of different rank level. This stage generates four different
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Fig. 6. Graphical representation of depth stack module.

Fig. 7. Graphical representation of saliency map re-fusion module.

refined saliency maps, {RS;;i=1,2, 3, 4}.
RS; = Conv(F), 9)

Finally, we add up these four refined saliency maps to get the
final prediction map:

S =RS; + RS, + RS3 + RSy (10)

where S denotes the final saliency prediction map.

Through summation and multiple convolutions, SMRM module
fuses the information of different coarse saliency maps for differ-
ent rank levels, which helps to improve the performance of salient
object ranking.

4.5. Loss

Inspired by the previous paper of Islam [31], besides the loss
between the final saliency prediction map and the ground truth,
we also exploit the synergy between the depth stack and the
ground truth stack to accomplish the task more efficiently.

It can be seen that the depth map can be divided into multiple
regions based on depth information, and these regions have a firm
consistency with the ground truth stack of saliency ranking, which
is exploited to construct the SMRM module.

According to the ground truth map, a ground truth stack con-
taining four sub-ground truths is generated. We take the instance
of rank 1 (the most salient instance) to form a binarized sub-
ground truth. Similarly, we take instances of rank 1 and rank 2
(the two most salient instances) to form the second binarized sub-
ground truth. And three instances of rank 1, rank 2 and rank 3 are
combined to form the third binarized sub-ground truth. And the
forth binarized sub-ground truth includes all salient objects.

By calculating the loss between the coarse saliency predic-
tion and the corresponding sub ground truth, four different coarse
saliency prediction maps with different saliency rank levels can
be generated: a coarse saliency prediction map with the most
salient objects, a coarse saliency prediction map with the two most
salient objects, a coarse saliency prediction map with the first
three salient objects and a coarse saliency prediction map with all
salient objects. The proposed coarse saliency loss L is as follows:

Lo =0a(Lee(CS1.G1) + £ce(CS2, G2) + £ce(CS3, G3) + £ (CS4, Gg)),
(11)

In the above equation, CS1, CS2, CS3 and CS4 represent the
coarse prediction maps of different rank levels after four DSM
modules, respectively. And G1, G2, G3 and G4 represent the bina-
rized sub ground truths of different rank levels. ¢c represents the
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widly used binary cross entropy loss. And we also calculate the
loss £r between generated refined prediction map corresponding
to each coarse prediciton map and sub ground truth.

Lr = ale(RS1, G1) + Lee (RS2, Go) + £ee(RS3, G3) 4 £ce (RS4, G4)),
(12)

RS1, RS2, RS3 and RS4 represent the refined prediction maps of
different rank levels in SMRM modules, respectively. And G1, G2,
G3 and G4 represent the binarized sub ground truths of different
rank levels. ¢c represents the widly used binary cross entropy loss.

Our model is divided into four rank levels, extracting four dif-
ferent image features. Using the four image features of different
rank levels generated before, we calculate the loss by correspond-
ing these features to the ground truth of different rank levels in
the saliency ranking. The previous image features are upsampled
separately to generate four binarized saliency maps compared with
ground truth at different rank levels. As a result, we obtain the
saliency prediction maps for different rank levels.

The final saliency loss is the weighted combination of the
coarse saliency loss and the refined saliency loss.

L=a(Lle)+ B(Lr), (13)

In the above equation, @ and B are the weight parameters. In
this paper, we will simply set « as 1/3 and set § to be 1. Since this
work is for Salient object Ranking for Complex and Indoor scenes,
the proposed network is abbreviated as SRCINet for simplicity.

5. Experiments
5.1. Implementation details

Necessary image augmentations are exploited, such as random
rotation, random crop and random flip to avoid potential overfit-
ting. The input image is resized to have a resolution of 640 x 480.
Our model is implemented by the Pytorch framework and trained
on TITAN RTX GPU. We set the mini-batch size to be 10. The total
number of epochs for each training is 200. The Adam optimizer is
employed with the learning rate of 104

5.2. Datasets

The proposed database, i.e. NYU rank, is used to compare the
performances of different models. The proposed RGBD NYU-rank
dataset contains RGB images, depth images and truth images for
salient object ranking. We randomly divide this dataset into a
training set of 1160 images and a test set of 289 images.

5.3. Evaluation metrics

Two metrics are employed to measure RGB-D Saliency ranking
performance, including Salient Object Ranking (SOR) and mean ab-
solute error (MAE). SOR metric is used to assess the saliency rank-
ing accuracy of different prediction maps. It is expressed as Spear-
man’s Rank-Order correlation between the predicted rank order of
the salient objects and the ground truth. Correlation coefficients
are during the interval [-1, 1] from the absolutely wrong predic-
tion to the perfectly positive correlation [31]. If the predicted rank-
ing series is the same as the actual ranking series, it is strongly
correlated, and the Spearman coefficient is 1. If the predicted rank-
ing series is the opposite of the actual ranking series, the coeffi-
cient is —1. In this paper, all correlation coefficients are normalized
to be in the range of [0,1] for a better linear formulation.

The MAE is used to measure the pixel-level difference between
the predicted map and the ground truth by averaging the absolute
value of the difference over all pixels. This metric is used to eval-
uate the accuracy of the generated saliency maps. This metric is
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Table 3

Quantitative analysis of different models.
The backbone network without the proposed
DSM module and the proposed SMRM mod-
ule is directly inputted into a simple con-
volution operation to obtain the results as
baseline. | (1) means the higher(lower) the

better.
Method MAE]  SOR?%
DMRA [36] 0.191 0.627
D3Net [37] 0.114 0.716
SP-Net [10] 0.110 0.715
Baseline (A) 0.161 0.679
Baseline + DSM (B) 0.122 0.689
Baseline + SMRM(C)  0.112 0.719
SRCINet (D) 0.108 0.732

helpful for both salient object ranking and salient object detection
[33].

5.4. Quantitative analysis

Previous saliency ranking studies have been conducted on RGB
images, and our study is the first RGB-D saliency ranking work. Be-
sides the proposed SRCINet, we propose another three methods by
adding none or part modules to the backbone network for com-
parison. The first method is to obtain the prediction map by sim-
ple convolution operations based on the image features extracted
by the backbone. This method is used as our baseline. The sec-
ond method is to add the DSM module to the baseline. In this
method, we add up the four coarse prediction maps and divide
them by four as the final prediction map. The third method is to
add the SMRM module to the baseline. The fourth method is the
proposed SRCInet, where both the DSM module and SMRM module
are added to the baseline.

All the experiments are trained for 200 epochs. The epoch with
the best MAE is taken as the final experimental result. Table 3
shows the quantitative comparison of different models. It can be
seen from the MAE metrics that the addition of both the DSM
module and the SMRM module improves the prediction perfor-
mance. The best MAE result is obtained when both the DSM mod-
ule and the SMRM module are added simultaneously. The experi-
mental results show that the proposed SRCINet has the best per-
formance with the lowest MAE. As seen from the SOR metrics, the
addition of only the DSM module results in a slight decrease in the
SOR metrics. When only the SMRM module is added, the SOR met-
ric slightly increases. Moreover, when both modules are added at
the same time, the SOR metric gets a considerable improvement.
This indicates that the two modules we designed can enhance the
prediction of salient object ranking when interacting with each
other. From the modeling perspective, the DSM module improves
the MAE metric but reduces the SOR metrics when used alone. At
the same time, the SRMR module alone improves the MAE metric
and slightly improves the SOR metric. The MAE and SOR metrics
are greatly improved when these two modules are used together.
This reflects the effectiveness of the proposed model and validates
our idea that depth stack and ground truth stack can help to im-
prove the RGB-D saliency ranking performance.

We have compared the proposed method with three more RGB-
D salient object detection methods: SPNnet, D3Net and DMRA. As
it can be seen in Table 3, the performance of the proposed model
SRCINet are the best comparing with other three RGB-D salient ob-
ject detection models based on both MAE metric and SOR metric.
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Fig. 8. Visual comparison of different models, (a) RGB images, (b) depth images, (c) ground truth, (d) The proposed SRCINet, (e) Baseline + SMRM, (f) Baseline + DSM, (g)

Baseline, (h) SPNet [10], (i) D3Net [37], (j) DMRA [36].

5.5. Qualitative analysis

Fig. 8 shows the visual comparison of the results based on dif-
ferent models. The first column of the figure is the RGB image,
the second column is the depth map, and the third column is the
ground truth. The fourth column shows the prediction results of
the complete SRCINet model. The fifth column shows the predic-
tion results of the baseline added SMRM module, the sixth column
shows the prediction results of the baseline added DSM module,
and the seventh column shows the effect of the baseline.

It can be seen that when only the baseline model is used, the
saliency ranking of the prediction results is not satisfactory. The
low rank level objects are often ignored. For example, in the sev-
enth column of the third row, only the contour of the object in-
stance of rank one can be predicted, but not the objects of rank 2
and rank 3. Also, the network is not able to correctly discern the
saliency level of the object. When only the DSM module is added,
the segmentation of the objects with low saliency rank is im-
proved, but some cluttered lines appear in the images. Its saliency
ranking prediction is also unsatisfactory. For example, in the sixth
column of the second row, all rank-level objects can be predicted,
but the contour of the objects is not precise enough.

The segmentation of objects is improved by adding only the
SRMR module. And the saliency ranking of the model has been
improved. However, some background regions are incorrectly pre-
dicted as salient regions. For example, in the fifth column of the
third row, all three rank-level objects can be predicted, and the
predicted saliency levels are basically correct. However, a large
number of background pixel points in the figure are predicted to
be salient.

After adding both the DSM module and SRMR module, the
model segmentation is significantly improved. And the saliency
ranking results have improved considerably. For example, in the
fourth column of the third row, the contours of all three rank-level
objects can be predicted more accurately, and the three predicted
objects are correctly ranked in terms of saliency.

We also visually compare the proposed method with three
RGB-D salient object detection models. It can be seen that SPNet
can predict the saliency level relatively accurately, but there is a
problem of predicting some pixels in the background as salient.
D3Net can predict the contour information for accuracy, but failed
to predict the saliency level correctly in some cases. For example,
in the ninth column of the second row, the saliency level predic-
tion deviates widely. DMRA can detect salient object, but does not

Fig. 9. Failure cases. (a) Image, (b) corresponding depth map, (c¢) ground truth(GT), (d) prediction map.

1
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predict the saliency level. The contours of the objects were not cor-
rectly predicted, while the saliency levels of different objects could
not be discerned in the prediction maps.

5.6. Failure cases

There are still some failure cases in the results of our experi-
ments as shown in Fig. 9. When small objects appear in a scene
with multiple salient objects, the model sometimes does not pre-
dict the contours of small objects well. For example, in the fourth
column of the first row and second row, objects with small objects
are not correctly predicted. Further improvements can be made in
the optimization of small salient object detection. Another kind of
failure case is that the prediction maps sometimes contain noise
in the background. For example, in the fourth column of the third
row, there is some noise in the background of the prediction map.
This shortcoming can be solved by introducing instance segmenta-
tion. Subsequent works can introduce instance segmentation into
RGB-D salient object ranking to further improve the prediction re-
sults.

6. Conclusion

The current RGB-D salient object detection is treated as a bi-
narized segmentation task. Besides, indoor and complex scenes
with multiple objects are usually uncommon in the current RGB-D
saliency detection dataset. This paper introduces the salient object
ranking task into the RGB-D field. Since the lack of such a dataset,
we reconstruct an RGBD NYU-rank dataset for salient object rank-
ing tasks. The dataset contains indoor and complex scenes. We
also propose a novel end-to-end neural network for salient object
ranking using the synergistic features of depth stacks and ground
truth stacks. It exploits the location and contour information in the
depth map to compensate for the missing information in RGB im-
ages and perform the saliency ranking task more effectively. The
experiments demonstrate the effectiveness of our proposed neural
network. It is proved that the proposed DSM module and SMRM
module can help to improve the effectiveness of the salient object
ranking performance.

3D vision has attracted the great interest of the research com-
munity, and we expect that the proposed RGB-D salient object
ranking task can contribute to other subsequent tasks of 3D vision.
In the future, further attention can be paid to improving salient
object ranking results for small and low rank-level objects in the
dataset. Also, an attempt can be made to introduce instance seg-
mentation into salient object ranking tasks.
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